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$ v = 1; xC y = u$ v; ## Given equations...
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; ## What I'm looking for, and the "answer". This is funky physicist 

notation for the partial derivative of x with respect to u where v is held constant K the book 

says that pure mathKies use a different notation.
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$ dv = 0; dxC dy = u $dv

C v$ du; ## Step one, differentiating the given equations.
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C dy = v$ du; ## v held constant, so dropped the dv terms.
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## It 's at this point that my textbook goes into some bizarre explanation

 (a generous term for it ) of a matrix method for determining the chain rule, and  I 

completely lose what I'm supposed to be doing.


